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One of the f i r s t  models of an explosion in the ground was a hydrodynamic scheme [1]. De- 
spite the deficiencies and definite thermodynamic  contradict ions [2] of the scheme, the qual-  
itative p ic ture  of an explosion in the ground [1] is descr ibed ra the r  c lear ly .  Subsequently, 
many papers  appeared which were concerned with this problem and which used more  complex 
plast ic  and elastoptast ic  models as simulated media, but the model [1] of an explosion in the 
ground, as before,  impre s se s  one with its s implici ty.  Using the formulation of [1], the present  
paper  invest igates the stabil i ty of the boundary of an explosion-produced cavi ty and of the 
shock wave. Considerat ion is l imited to the s implest  case where the main motion is one- 
dimensional .  

In the present  case, the scheme of [1] takes the following form~ A shock wave s tar ts  propagating at 
the t ime t = 0 in a medium with a constant density O~. Behind the shock front there  is an incompress ib le  
ideal fluid with a density 020 The solutions charac ter iz ing  the motion of the medium are of the form 

Ou o , flu o l Opo" Ou~ ~ 0 ,  
at -' U o o-; = -  ,o~ b T ,  o-T 

where u 0 is the project ion of the velocity vector  on the x axis and P0 is the p r e s s u r e .  At the boundary x ~-a 
of the explosion-produced cavity, the p re s su re  in the fluid is equal to the p re s su re  in the cavi ty.  At the 
shock front x = R, the conditions 

~L0 (R)=;R; 

p o ( R ) = 9 , ~ R ~ - k  ps,  

are  satisfied, where } = 1 - ~/D2, the dot denotes differentiation with respec t  to t ime, and Ps is the p r e s -  
sure  f rom which shock compress ion  is initiated~ Unperturbed flow will be charac te r ized  by the following 
re la t ions:  

a - -  ~[l-:- ([ - -  ~)ao, a o = R o  - -  is the initial state ; 

o 

Po = - -  9~ z '- ~ " - 

We assume that the main flow is subjected to a small perturbation 

U~ ==u0+ u; U~ =v; p =Po~-P; 

X b = R  ?e;  X , ~ = a - _  6, 

where U x and Uy are the components of the velocity vector  of the per turbed flow; Xn(y , t) and Xb(Y , L) are,  
respect ively ,  the equations for the boundaries of the explosion-produced cavity and the shock wave. 
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The equations of motion and the equation of continuity, l inearized with 
respec t  to the perturbation,  are  writ ten in the form 

(1) 

Linearizat ion of the conditions in powerful explosions was pe r fo rmed  in [3] for solution of the problem of 
shock-wave stabili ty.  In the presen t  case,  the medium behind the shock front is incompress ib le  and there 
are  no density per turbat ions .  In analogy with [3], one can obtain the relat ions 

when x = It, the term(ap 0/Ox)~ appears  because of the drift  of the boundary condition f rom the per turbed 
boundary at x = X b toward the old boundary at x = R. 

On the free surface,  we have two re la t ions :  f rom the condition for  continuity of p r e s s u r e  

- Opo ~ 
P ~ 

and f rom kinematical  conditions 

U ~  whefl X = a .  

We assume that the per turbat ions  of the free boundary and of the surface of the shock wave are  ha r -  

monic 

e=e(t)cos ky; 6=5(t)cos ky. 

Then the boundary conditions are  writ ten in the form 
at x=a  

ip=p~uo5 cos ky, (2) 

at x = R  

{ p = (p~.u0s +2plu0e')cos ky, 
u=~ e cos ky, (3) 
du/dx= -- uok"e cos ky. 

The last  of the relat ions in (3) was obtained through the continuity equation. 

Differentiating the f i r s t  equation in (1) with respec t  to x and the second with respec t  to y, and adding 
them, we obtain a Laplace equation for p. Subsequently, the scheme for construct ion of a solution is the 
following: f irst ,  we seek a solution of the equation Ap =0 satisfying the f i r s t  conditions in (2) and (37; then, 
using this solution, we find the function u(x, y, t) f rom the equation of motion and having substituted it in 
the remaining boundary conditions, we obtain the des i red  relat ions for determination of the perturbat ion 
amplitudes e(t) and 5(t). 

One can ver i fy  that the function 

P = (9~u0e @ 2pluoe) sh k (x - -  a) ~- p2u06 sh k (R - -  x) COS ky 
sh k (R -- a) 

sat isf ies  the necessa ry  requi rements  for p. 

The family of curves  for the f i r s t  equation of the sys tem (1) have the form 0x/Ot = u0(t). Along the 
curves ,  @u/at) =-(1/o2)(80*/Ox)  andu(x,  t) =u(R,  T) - - y !~o-~[a ( z )+x- -a ( t ) , z ]dz , '~where  r i s  the time 

of shock-wave a r r iva l  at the point with the coordinate R(7) (Fig. 1). 
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R(~) - -  a("c)= x - -  a(t) 

W h e n  x = a ,  :, 
0p 

u (a, t) = u (R (0), 0) - P~ ~ (a (z), z) dz. 

D i f f e r e n t i a t i n g  t h i s  e x l 3 r e s s i o n  w i t h  r e s p e c t  to t i m e  and s u b s t i t u t i n g  i t  in  the  s e c o n d  r e l a t i o n  in  (2), we  o b -  

t a i n  

t Op (a, t). (4) cos ky P~ ~ -  

W e  d e t e r m i n e  3 u / 3 x  w h e n  x = R ,  

t 

i @(R(:),:) ~: 
o--g = o-: "o~ ~ ~ ~ fa (z) § z - -  ' , 

w h e n x = R , t =  T, 

a~ _ V O u ( R , t )  ~ I Op(R,t)] 0z 

U s i n g t h e  s e c o n d  and  t h i r d  c o n d i t i o n s  in  (3), we o b t a i n  

[ [~e 'coskg~-  ~ ~ 1 (5) uok% cos kg = (l -- ~) u o p-~ o-----7- 

S u b s t i t u t i n g  t h e  e x p r e s s i o n  f o r  p(x,  t) in  E q s .  (4) and  (5), we  o b t a i n  a s y s t e m  of o r d i n a r y  d i f f e r e n t i a l  
e q u a t i o n s  f o r  the  d e t e r m i n a t i o n  of  6 and  e, 

d25 , 2k (l --  ~) u o ds kun e - -  ku o cth k (R - -  a) 3 = 0; 
dt 2 ~ shk ( f l - - a )  dt shk ( f l - - a )  

d~s de [ ~'~k~(i-- ~) T- k u ~  a)] s shk~R ~-j~- + 2 h : ( t - - ~ ) U o C t h k ( R - - a ) - [ [ - ~ - [  ~ ~ 0 = 0 ,  

(o) = ~ (0). 

T h i s  s y s t e m  w a s  s o l v e d  n u m e r i c a l l y  f o r  t h r e e  d i f f e r e n t  t y p e s  of  m o t i o n :  

u n i f o r m -  u 0 = c o a s t ,  a = u0t; 

u n i f o r m l y  a c c e l e r a t e d -  u 0 = ~ t ,  a = ~r 

d e c e l e r a t e d -  u 0 = p / 4 2 ~  + 1, a = ~ f i t  ~- 1. 

T h e  l a s t  s o l u t i o n  f o r  u 0 w a s  o b t a i n e d  in  t h e  m o d e l  of  [1] f o r  Ps  = 0 and  an a d i a b a t i c a l l y  v a r y i n g  p r e s s u r e  
a t  the  f r e e  b o u n d a r y :  

(6) 
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P = Poo for ?=3 .  

We invest igate  the behavior  of the solutions of the s y s t e m  (6) for  
t ~ 0o One can then neglect  in the equations t e r m s  containing the coeff i-  
cient 1 / sh  k ( R -  a)~ The s y s t e m  of equations (6) takes the f o r m  

c~__~ _ ~ o 8  = o; 
dt ~ 

~ . . . .  -,J. . . . . .  . ..... % kUo lj ~+-k(t--~)Uo-~+[~2k~ ~)+ ~=0. (7) 

In the case  of uni form motion, Eqs .  (7) have the s imple  solutions 

6 =  Alt.+ A~; 
e k~ B~e  n,t  , B e n~t -~- ~ ; 

nh2 = ~ _ ~ ; Ai, B~ --  const, 

i .e . ,  t hepe r tu rba t ions  of the f r ee  boundary i nc r ea se  l inear ly  for  la rge  t and those in the shock wave are  
damped (damped osci l la t ions) .  The r e su l t s  of a numer i ca l  calculat ion exempli fying this case  a re  shown in 
Fig. 2, where  the solid line co r r e sponds  to the value k = 2 and the dashed line, to k = 10. 

For  uni formly  acce l e r a t ed  motion,  the s y s t e m  (7) takes the fo rm 

[ (~i - -  k(z6 = O; 

+ a2t~kS "'~2 :: e = 0. 

Then 6 = Cle ~--~f + C2e -v'k-~T. In the second equation we make  the subst i tut ion 

e=w(t)exp[ ~ ( t - ~ ) ~  t~] 

We then obtain the equation 

w + [  .ksc~2(t-~)~ t s - k ( i 2 7 ~ ) a ] w = 0  

for  w(t). Neglect ing the second t e r m  in the coeff icient  of w, we obtain 

On the bas i s  of the m a t e r i a l  p r e sen t ed  above, one can a r r i v e  at the following coriclusion: for  uniformly 
acce l e r a t ed  motion the pe r tu rba t ions  at the shock f ront  d e c r e a s e  exponential ly and those at the f ree  s u r -  
face i nc rea se  exponential ly.  Resul ts  of numer ica l  calculat ions for  k = 2 and k = 10 in this case  a r e  shown 
in Fig. 3. 

Fo r  dece le ra ted  motion 

a = V 2 ~ t + i  ; u0= 17 ~ ,  

and the s y s t e m  (7) is  wr i t ten  in the fo rm 
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Neglecting the compar i son  with 2fit and neglecting the second t e r m  in the coefficient of e, we obtain 
af ter  the substitution r = ~t- 

(~- - - - V - - -  re = ~. 

Here also one can neglect t h e - 1  t e rm in the second pa r t  of the equation for e. The sys tem then has the 
following solution: 

e = D~e ~'VF ~- D2eWVV; 
7~2 = ~(t-~)1/~ (_I+~/--V-~; 

The solution for e represen t s  damped harmonic  oscil lat ions and that for 5 represen ts  harmonic  osci l lat ions 
whose amplitude increases  as 5 ~ t 3/8 for large t. Curves for e and 5 are shown in Fig. 4 for  k = 2 and 
k = 10 which i l lustrate  this type of motion for short  t imes .  

In all the types of motion discussed,  the shock wave is stable with respec t  to small  per turbat ions  
and the free boundary is unstable with the growth rate of the instability depending on the form of the un- 
per turbed motion. The instabili ty grows most  rapidly for acce lera ted  motion and slowest of all for de- 
ce lera ted  motion of the boundary of the explosion-produced cavity,  

When producing explosions in the ground, it was long ago noted that a considerable volume of the 
ground around an explosion-produced cavity was penetrated by numerous radial c racks  which emerged  at 
the surface of the cavity.  The observed instability is a possible " t r igger  mechanism" for c rack  formation 
during an explosion in the ground. 

2. 

3. 

LITERATURE CITED 

Ao Yu. Ishlinskii,  V. N. Zvolinskii, and N. Z. Stepanenko, "Dynamics of ground masses , "  Dokl. Akad. 
Nauk SSSR, 9__5.5, No. 4 (1954). 
S. S. Grigoryan,  "Formula t ion  of dynamic problems for ideal plast ic media," Pr ik l .  Math. Mekh., 
19, No. 6 (1955). 
S. P. D'yakov, "Stability of shock waves," Zh. ~ksp. Teor .  Fiz., 27, No. 3 (1954). 

337 


